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Ultrasonographic Thyroid Nodule Classification Using a Deep Convolutional 
Neural Network 

Background

The objective of this study is to develop a thyroid nodule classification 
system based on ultrasonography using a DCNN. To evaluate the 
proposed system, its results are compared with those of previous 
methods. 

Methods

In this study, transverse and longitudinal ultrasonographic thyroid 
images of 762 patients from the Korea Institute of Radiological & 
Medical Sciences were used for training and testing a deep learning 
model. Of all the cases, 325 were confirmed as benign (nodular 
hyperplasia, follicular adenoma, or cyst), and 437 were confirmed as 
papillary thyroid carcinoma after surgical biopsy. Each image has only 
one thyroid nodule, and an expert physician drew a rectangular region 
of interest around the pathologic nodule. The images were extracted 
from thyroid ultrasound video sequences captured with EPIQ 5G, HI 
VISION Ascendus and EUB-7500 ultrasound devices. The images were 
in JPEG format and ranged from 640 × 480 to 1024 × 768 pixels in size. 
All devices employed 12 MHz convex and linear transductor settings. 
The extracted images were distributed into training, validation, and 
test sets in a ratio of 6:2:2, as summarized in Table 1.

To remove annotations such as the caliper marks used to locate and 
measure nodule size as well as restore the gaps with the textures 
surrounding the annotations after removal, the input 
ultrasonographic images were processed as follows (Fig. 1A, B). The 
Roberts cross operator implemented in the scikit-image library, which 
is a Python image processing module, was used to detect edges. Then, 
pixels greater than 0.25 in value were identified as artifacts. The pixel 
values of the detected artifacts were deleted in the original image and 
the missing regions were recovered using the “inpaint_biharmonic” 
function from the scikit-image library with the default parameters.

Table 1. Distribution of cases in training, validation, and test datasets

Results

Fig 1A, B

Conclusion
In conclusion, we introduced a new fine-tuned deep transfer learning 
model for classifying thyroid nodules in ultrasonography. We expect 
this model will help physicians diagnose thyroid nodules with 
ultrasonography. 

Benign Cancer

Total A B C Total A B C

Training 199 108 52 39 260 101 86 73

Validation 64 39 13 12 94 35 34 25

Test 62 33 15 14 83 34 26 23

Image Preprocessing

Sample Augmentation

Nodule-centered images were cropped to the largest rectangular 
shape in each of the original transverse and longitudinal sonographic 
images. Two random-sized rectangular images including a nodule 
were cropped from each vertex. Thus, eight rectangular images 
including a nodule and one vertex were cropped from the original 
images (Fig. 2). 

In addition, considering the bilateral symmetry of the thyroid, 
horizontal flip was applied to these images. In summary, 18 transverse 
and 18 horizontal images per patient were created from the largest 
rectangular image plus the eight smaller rectangular images.

Fig 2

Transfer learning by fine-tuning modified VGG16 model

Because of the insufficient number of training samples, we employed 
a transfer learning method with a pretrained deep learning model. The 
model used in this study was VGG16, which is known for its good 
classification results in the ImageNet Large Scale Visual Recognition 
Challenge. We modified VGG16 by replacing the fully connected layer 
with global average pooling and sigmoid layers (Fig. 3). The binary 
cross entropy function was used for the loss function, and the network 
was minimized by an Adam optimizer at an initial learning rate of 
4×10−6 with a decay rate of 10-6. The batch size was set to three. All 
layers in the modified VGG16 were fine-tuned. The Keras (version 
2.1.5) wrapper deep learning library with TensorFlow (version 1.7) was 
used as a backend with Python version 3.6.5 for implementing the 
modified VGG16 deep learning model. Our calculation was performed 
on a computer running 64-bit Windows 10 and equipped with one 
Geforce 1080 Ti. All of the input images were rescaled to [0,1] and 
then the mean of each image was set to zero using a Keras built-in 
operation. Four-fold cross-validation was performed to prevent 
overfitting. The weights of the fine-tuned deep learning model were 
obtained at the lowest validation loss. Figure 4 shows the detailed 
process of fine-tuning the VGG16 model in this study.

Fig 3

Area Under the Curve Sensitivity (%) Specificity (%) PPV (%) NPV (%)

0.916 [0.907 – 0.922] 0.92 0.70 0.90 0.75


